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Modeling Flexural Plate Wave Devices
Marc S. Weinberg, Brian T. Cunningham, and Christopher W. Clapp

Abstract—A lumped-parameter model is derived for flexural
plate wave (FPW) devices which are rectangular plates or di-
aphragms with structural layers, a piezoelectric layer, and with
interdigitated conducting combs for driving and sensing. This
configuration is often used in micromechanical chemical sensors.
The model is based on a closed-form solution of a resonating beam;
however, the results are applicable to plates supported on four
edges. The model gives a voltage or charge output from the sense
combs as a function of voltage applied to the drive combs. The
analysis predicts the response of the multiple plate modes to axial
tensions and to comb finger dimensions and position relative to the
diaphragm eigenfunctions. These models are much more detailed
than those described in the literature on acoustic chemical sensors
[1]–[8] and are difficult to obtain by finite-element solutions.
Frequency responses of FPW devices constructed from silicon
with deposited aluminum nitride as the piezoelectric compared
well with analytic results. The effects of boundary conditions on
the plate’s lateral edges are discussed in both the analysis and
testing. [530]

Index Terms—Acoustic waves, biological sensors, chemical sen-
sors, flexural plate wave, modal analysis, modal response, mod-
eling, piezoelectric, separation of variables.

I. INTRODUCTION

F LEXURAL plate wave sensors (FPWs) have been
proposed for, and are being applied to, chemical and

biological sensing, fluid pumping, and filtering [1]–[8]. The
basic FPW device is shown in Fig. 1. A rectangular diaphragm,
usually doped silicon on the order of 1–3-m thick, is coated
with a piezoelectric layer, usually aluminum nitride, zinc oxide,
or lead zirconium titanate (PZT). The piezoelectric material’s
thickness is generally 0.2–1m. Conducting interleaved fingers
are placed on the piezoelectric. One pair of fingers is used to
drive the diaphragm, while the second is dedicated to sensing.
The finger spacing and width are selected to excite desired
vibration modes and, hence, operating frequency. In the FPW,
as opposed to the surface acoustic wave (SAW), the diaphragm
is assumed thin compared to the vibrating modes’ wavelengths
so that the two surfaces are strongly coupled and a single wave
propagates along the diaphragm.

Previous models used to predict behavior were based on
simple beam equations [1]–[7]. Paralleling SAW devices,
these FPW’s were operated as delay lines so that propagation
velocity was the major consideration. An FPW sensor may
be operated as a delay line by using tone bursts to measure
the phase velocity, group velocity, and insertion loss. RF tone
bursts are applied to one transducer, and the RF frequency
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Fig. 1. Schematic of FPW. (a) Mechanical. (b) Electrical.

is tuned to obtain maximum output of the received signal,
which corresponds to the resonant frequency, from which
the phase velocity may be calculated. The pulse travels at the
group velocity, which can be calculated using the delay time
between input and output. The tone-burst method eliminates
interference due to electromagnetic feed through that travels
at the speed of light, rather than at the speed of Lamb wave
propagation. Since the electromagnetic pulse input is gone
before the acoustic pulse arrives at the output interdigitated
transducer (IDT), this method is advantageous for measuring
changes of insertion loss or attenuation over a large dynamic
range [1]. In [1]–[7], almost no comparison of model versus
experimental data was offered.

Martin et al. [8] analyzed a simply supported rectangular di-
aphragm driven at resonance by electromagnetic Lorentz forces,
but did not consider the many resonances generally observed.
For measurements that require determination of small frequency
changes, such as chemical vapor sensing, the use of a feedback
oscillator to monitor the resonant frequency in real time is most
advantageous. A frequency counter circuit may sample the res-
onant harmonic and report information digitally. A resonant os-
cillator requires a closed-loop feedback path, including an am-
plifier with gain greater than the insertion loss of the device.
An oscillation condition can be satisfied if the total phase shift
around the loop (amplifier, transducer, and acoustic path) is an
integer multiple of rad [1].
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Supported by test data, the enclosed analysis indicates that
the FPW can be successfully modeled by modal analysis tech-
niques. This paper focused on steady-state open-loop frequency
response; however, the models can be applied to transient in-
puts and responses, which are used in delay-line FPW’s. The
analysis is based on a more detailed solution of a simple beam
[9], [10] with piezoelectric forcing [11] (see Section II and Ap-
pendix B). Combining beam bending with piezoelectric forcing,
the resulting model, this paper’s unique contribution, offers the
following benefits.

1) The lumped-parameter model can be combined with elec-
tronic models of excitations and sensing elements.

2) The many resonant frequencies and phase variations that
appear in frequency responses are predicted.

3) Including the diaphragm’s mechanical quality factor, the
model predicts the amplitude of the frequency response
from excitation to output voltage.

4) The impact of interdigitated comb parameters, width,
spacing, number of teeth, and distance between trans-
mitter and receiver on all the eigenmodes is included.

Construction of The Charles Stark Draper Laboratory Inc.,
Cambridge, MA, FPW sensors is described in Section III. The-
oretical and measured response are compared in Section IV. Ef-
fects of plate width, which can add additional resonant frequen-
cies, are discussed in Section IV-C and Appendix C. Section V
presents conclusions.

II. DERIVATION OF LUMPED-PARAMETER MODEL

A. Modal Solution of Beam Equations

1) Beam Equations:Following [9] and [10], which ignore
small rotation [1] effects, and the nomenclature of Fig. 2, the
equation describing the motion of a plate or beam is

(1)

where
position along beam;
displacement normal to beam;
time;
mass per unit length (2.5 10 kg/m);
damping per unit length (1.0 N-s/m, which corre-
sponds to the quality factor of 400 for mode
whose resonant frequency is 26.6 MHz);
force per unit length; a gravitational load would be
an example (in Section II-B, piezoelectric forces are
included);
rigidity for single-layer plates sup-
ported at ends (8.8 10 N/m ) (relations for
multiple layer plates are derived in [11] and sum-
marized in Appendix B);
tension or axial force; the tension is included be-
cause it dominates thermal sensitivity.

The values in parenthesis are for constructed diaphragms
(Section III), which consist of three layers: 2-m silicon,
0.5- m aluminum nitride, and 0.1-m gold. The plate width
and length are 300 and 1500m, respectively. The comb teeth

Fig. 2. Nomenclature for beam analysis.

and spacing are 9.4m so that the comb pitch is 37.5m. The
resulting phase velocity (pitch times resonant frequency) is
1000 m/s so that energy is not radiated into water, whose sound
velocity is 1500 m/s.

Two sets of end conditions will be considered. For easier
reading, the situation with the beam ends pinned will be handled
in this section. The solutions for built-in ends will be presented
in Appendix A, which will show that, for beams much longer
than the wavelengths, the solutions for pinned and built-in ends
yield almost identical conclusions. When the beam ends are
pinned, the displacements and the bending moments are zero
so that

(2a)

(2b)

where the prime () indicates differentiation with respect to.
Parts of the needed solution appear in [9], which deals with

suspension bridges, and in [10]. The homogeneous solution to
(1) is obtained by assuming that

(3)

Substitute (3) into (1) and separate variables

(4)

where equals constant, for which we shall solve.equals
the resonant frequency of mode. This will be shown in Sec-
tion II-B.

Equation (4) is two equations: one for and one for
. The equation is

(5)

where , which implies

(6)

is an eigenvalue.
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Per [10, p. 210], the solution of (5) with the boundary condi-
tions (2) or (A.1) are orthonormal, which is an attribute that will
be used in Section II-B. The solution forin (5) is

(7)

where . , , , equal constants of inte-
gration. In (7), is not the damping of (1).

When the axial force is zero, is the coefficient of for
all terms in (7). These eigenvalues and functions are derived
or listed in [9]–[12]. Unique contributions of this paper are the
response to piezoelectric forcing from comb excitation and the
effects of axial force .

2) Pinned Ends Without Tension:With the boundary condi-
tions described by (2) and , nonzero values for the con-
stants in (7) are obtained only for , the eigenvalues,
where equals any integer. The mode shape (eigenfunction) is

(8a)

With (6), the natural frequency of theth mode is

(8b)

3) Pinned Ends with Tension:With the boundary conditions
described by (2) and axial force, new results are obtained. At the
beam’s ends, the sine term must be zero in (7), i.e.,

(9)

With (6) and (9), the eigenfunction and associated resonant
frequency are

(10a)

(10b)

With no axial tension, the resonant frequency of (8b) is re-
gained. The mode shape is identical with and without tension.
With no rigidity ( ), the resonant frequency is proportional
to .

B. Modal Excitations

Follow [9] and consider the forced response, which was not
done in the previous FPW literature [1]–[8]. Assume that the
forced response is given by

(11)

where the mode shapes are those determined in Section II-A.
Insert (11) into (1) and use (4)

(12)

Note that is the resonant frequency of each mode, as stated
after (4). Multiply both sides of (12) by and in-
voke the orthonormal properties of the eigensolution [10] to ob-
tain the equation of motion for each mode as follows:

(13)

where equals the modal forcing function, the force driving
mode .

In order to study effects of build tolerances, assume that the
mode shape (8a) or (A.2a) and (A.2b) is given by

(14)

where equals the alignment between eigenmodes and refer-
ence. Due to the large number of modes, pinned and built-in
beams differ little, except for the phase shift of .

Assume that a force density whose first harmonic is described
by [11] drives the beam

(15)

where
, the factor deter-

mines the first harmonic of the step sequence posi-
tive, zero, negative, and zero torques;
magnitude of piezoelectric torque (B.1) per volt
applied to electrodes (2.6 10 N m/V), the
factor converts from torque to force per
unit length;
voltage applied to electrodes (include plus and minus
sides); sinusoidal inputs will be emphasized;
alignment between comb fingers and reference;
length of transducer equals mP/2 (712m);
comb pitch (37.5 m);
number of combs in transducer, the number of half
sines in (38 for both sense and drive combs).

With (13)–(15), the modal forcing function is determined as

(16)

where the comb starts at and ends at . (For the drive
combs and for the sense combs m)

constant, which relates the modal force to the input
voltage;
modal stiffness equals .

In (16), the integral is taken over the transducer lengthsince
the combs exert the force. The units ofare m/V and is
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proportional to times the integral. When the combs and
modes are aligned, and . Consider the situa-
tion where and , the modal forcing function
is

(17)

Closed-form integration has been done with nonzero phase
and comb displacement and is used in the results of Sec-
tions II-F and IV.

In (16), the force per length was represented by its
first harmonic. The modal forcing function in (17) is dom-
inated by terms with denominators, which include

; thus, higher harmonics of have larger values of
and contribute little to (17). This conclusion is valid when
and .

C. Sensed Charge

The model for converting strain into charge on the plates is
repeated and extended to the dynamic model. From [11], and
assuming the plates are grounded, the surface charge per unit
length is described by

(18)

where
piezoelectric constant relating electric field to
strain ( 2.6 10 C/N for AlN);
piezoelectric material’s Poisson’s ratio (0.28); the term
in accounts for plates versus thin beams [11];
Young’s modulus of piezoelectric material;
width of diaphragm.

Using (14) and (18), , the peak strain at area center
for piezoelectric material, is related to the modal amplitudes
through

(19)

where equals the distance between the piezoelectric mate-
rial’s center of area and the diaphragm’s neutral axis for torque
inputs (Appendix B). Since the cross section is rectangular, the
center of area is essentially the mid-plane of the piezoelectric
material; equals the radius of curvature at position.

Mindful of the differential amplifier in Fig. 1 and Sec-
tion II-D, the total sensed charge is calculated by integrating
the surface charge per unit length (18) over the length of
the transducer. The integration includes the surface charge
multiplied by an electrode area function times the incremental
length . Assuming ideal electrodes with no fringing, the area
function is a repeating sequence of positive, zero, negative, and

zero steps. It is convenient to consider these steps as a sinusoid,
which is the first harmonics of the stepped area function so that

(20)

With (18) and (19) inserted into (20), the total charge on the
sense or drive electrode

(21)

where the coupling between modal amplitude and charge is
given by

(22)

The integral in brackets is identical to that used to calculate the
modal force (16). The units of are C/m and is proportional
to times the integral.

D. Lumped-Parameter Model of Piezoelectric Effects

Consider the model of the piezoelectric comb, which consists
of two electrodes and a ground. The static equations relating
modal displacement and charge to drive voltage and modal force

is

(23)

where
capacitance from one plate to ground;
capacitance between positive and negative elec-
trodes;
piezoelectric coupling coefficients defined in (16)
and (22);
modal stiffness;
refers to drive electrode;
refers to drive electrode.

The negative signs on and indicate that the elec-
trodes are displaced 180 mechanical degrees from theelec-
trodes. The voltage applied to the negative comb is the negative
of that applied to the plus electrodes, i.e.,

(24)

Although there are many modes, only one is considered in
(23). With the small coupling assumption implicit in (23), the
voltages and currents applied to the plates are still described by
(18)–(22). Formulations (23) and (24) result in ,
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which is consistent with the circuit diagram of Fig. 1. Symmetry
and differential read out suggest the definition

(25)

Equation (23) is simplified to

(26)

When adding the circuit resistors, one must consider that
consists of two currents, as outlined in (25). Equations (25) and
(26) describe both the drive and sense electrode pairs.

E. Equations of Motion with Drive and Sense Circuit

The results of the previous appendixes are combined into a
comprehensive dynamic model that relates excitation voltage
to the preamplifier output. The model will include only three
modes (11); however, extension to more modes is straightfor-
ward and has been shown in Figs. 3 and 4. As outlined in Sec-
tion II-D, the charge includes both the plus and minus plates.
Consider voltage and force applied directly to the piezoelectric
material

The force applied to the piezoelectric material is described by

(28)

Assuming the transformer turns ratio is1 : 1 and that the trans-
former is center tapped, the voltage applied to the drive comb is

(29)

where equals the voltage applied by source in Fig. 1,
equals the input resistor (50-nominal in Fig. 1).

Assuming that the output preamplifiers are at virtual ground,
the sense voltage is given by

(30)

where equals the sense resistor (100-nominal in Fig. 1).
The factor of two accounts for the definition of charge(25)

that includes both the positive and negative electrodes.

F. Observations

The linear-differential-equation constant coefficient model
summarized in Section II-E applies to both transient and fre-

Fig. 3. Calculated frequency response. Phase between modes and combs' =

0.

quency response and, hence, to both delay lines and resonating
FPW.

For mode numbers greater than five, the pinned and built-in
end conditions yield similar modal solutions and sensitivities
to tension. For the examples of this section and Section IV, the
pinned solutions will be used. The plate eigenfrequency discus-
sion (Appendix C) will consider built-in edges.

The frequency response of sensed output voltage with re-
spect to drive voltage is calculated in Fig. 3 for the drive fin-
gers aligned with the principal eigenmode ( , ).
The highest amplitude occurs for the mode whose wavelength
corresponds to the finger pitch. A quality factor of 400 was as-
sumed for each peak. Due to the multiple modes, several peaks
and 180 phase shifts are seen. The calculated amplitude agrees
within a factor of three with measured data (Section IV-B). This
is noteworthy since the gain depends on the square of the piezo-
electric constant and many dimensions. Without the resonance
and high quality factor, the calculated amplitudes would not be
achieved. For many modes, the fractional separation between
peaks is approximately [see (8a), (8b)] and is often seen in
the measured data.

As dictated by the modal forcing function (17), peaks whose
wavelength is removed from the comb pitch are smaller. As the
comb length become larger, the number of peaks generally
decreases. If the combs and diaphragm are identical in length
and aligned, only one peak is excited.
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Fig. 4. Calculated frequency response. Phase between modes and combs' =

�=2.

Fig. 4 displays the calculated frequency response when the
alignment angle . While the frequency separation and
peak amplitudes are similar, the details from the baseline
vary noticeably. The phase shifts and relative amplitudes vary
considerably. Since the relationship between the comb fingers
and eigenmodes can result in zero modal forcing function, the
amplitudes at certain eigenfrequencies are small.

The charge is the total charge summed over the electrode,
while the force is the modal force, which is a force per unit
length along the beam. When the mode period matches the
combs’ period

(31)

and the combs are aligned with the eigenmode [ in (16)],
the piezoelectric equation (16) and (22) obey a form of reci-
procity, i.e.,

(32)

The units of are m/V, k, N/m, and , C/m. The reciprocity
demonstrates symmetry between voltage, modal force, charge
per length, and modal amplitude. When the eigenmodes are not
aligned with the combs, (32) does not govern.

The frequency variation from tension (10b) or (A.4) can be-
come quite large for small mode numbers. For example, the

Fig. 5. FPW photograph.

change with temperature in tensionin the diaphragm is ap-
proximately described by

(33)

where
thermal expansion difference between substrate or
frame and diaphragm (1 ppm/C; parameters assumed,
for example, are in parentheses);
Young’s modulus (1.65 10 N/m for silicon along
110 );

diaphragm width (300 m);
diaphragm thickness (2.5m).

As an approximation, the diaphragm is thin so that its length is
determined by the relatively massive frame’s stretching, which
is set by its thermal expansion coefficient. The diaphragm strain
is than determined by the frame stretching and thermal expan-
sion of the diaphragm so that (33) ensues.

Assume a 0.0015-m-long diaphragm operating at the mode
number . The wavelength is 150m, four times longer
than those constructed (Section III) and the eigenvalue (8a) and
(8b) is 4.2 10 m . The tension is 1.2 10 N/ C. Calcu-
lated per Appendix B, the structural rigidity (1) is 8.810
N/m . With (8a) and (8b) and (10b) or (A.4), the frequency vari-
ation from axial tension is 390 ppm/C, which is high compared
to the 26 ppm/C calculated form Young’s modulus’ thermal
variation. Reducing the pitch raises the wavenumber and re-
duces this thermal sensitivity. Along with energy radiation dis-
cussed after (1), thermal sensitivity is a second reason for re-
ducing the comb pitch to the constructed 37.5m.

III. SENSORCONSTRUCTION

A scanning electron microscope photograph of a completed
FPW device is shown in Fig. 5. The fabrication sequence for
building The Charles Stark Draper Laboratory Inc.’s FPW res-
onator (cross-sectional diagram of a completed device is shown
in Fig. 6) begins with a purchased silicon-on-insulator (SOI)
wafer (BCO Technologies, Belfast, U.K.). The SOI wafer upper
surface is a 2-m-thick layer of epitaxial silicon bonded to a 1-
m-thick layer of SiO. The SOI substrate is 380-m thick. An
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Fig. 6. Fabrication sequence.

approximately 0.5-m layer of piezoelectric AlN is deposited
over the upper epitaxial silicon [13].

Vias for grounding contacts to the epitaxial silicon are pro-
vided by etching an opening into the AlN. Next, titanium-plat-
inum-gold (TiPtAu) metal of 0.1-m total thickness is patterned
to define interdigital metal electrodes, wire bond pad areas, and
ground contacts. Finally, the membrane is defined by etching a
vertical sidewall cavity from the backside of the wafer with an
inductively coupled plasma (ICP) etch machine using the Bosch
process. The 1-m SiO layer of the SOI substrate acts as an
automatic etch stop for the ICP process. After the ICP etch is
completed, the SiOlayer is removed by dipping the wafer into
buffered hydrofluoric acid.

IV. M EASUREDFREQUENCYRESPONSE

A. Test Description

After fabrication, FPW devices were characterized to de-
termine how well they matched modeled performance and
design parameters. Each device was tested in an open-loop
configuration through signal conditioning electronics designed
to interface to a Hewlett-Packard Network Spectrum Analyzer.
The electronics transformed single-ended source excitation to a
differential drive voltage, and returned both a reference signal
(identical to the source excitation input) and the amplified
output (Fig. 1). Amplification of the low signal output was
achieved through an instrumentation amplifier (IA), which
resulted in extremely high common-mode rejection ratio,
symmetrical loading on sensor outputs, and high gains. Each
of the three active components that constituted the IA had high
gain-bandwidth products to improve phase errors over gain
and frequency. Further reduction of errors was achieved by
calibrating the analyzer and electronics to remove cabling and
stray capacitance effects.

Once calibration was completed, wide-band (10–30 MHz)
spectral measurements determined the resonant frequency of
the primary mode, while narrow-band (1-MHz) measurements
were used to investigate mode structure, quality factor () of
resonance, and phase transition across primary mode frequency
width.

B. Results Supported by Beam Theory

For the complete open-loop system from voltage input to
sensed output, the frequency response for a typical FPW is
shown in Fig. 7. The quality factor of the individual peaks,
calculated from 3-dB points, is roughly 400. The response

Fig. 7. Measured FPW frequency response, which compares well with the
' = �=2 calculation of Fig. 4.

of Fig. 7 closely resembles that calculated in Fig. 4. The
calculated resonances are centered about 26 MHz compared
to the measured 25 MHz. The calculated amplitude agrees
within a factor of three with that measured; a good result since
the gain depends on the square of the piezoelectric constant,
a parameter which is difficult to control during fabrication,
and many dimensions. Without the resonance and high quality
factor, the calculated amplitudes would not be achieved. The
center frequency of the peak cluster is close to that predicted
in (8a) and (8b) and shown in Figs. 3 and 4. The fractional
separation between peaks is approximately, as predicted
by (8a) and (8b).

While the center frequency, the frequency separation be-
tween adjacent peaks, and the amplitude match calculations,
the measured relative peaks vary between units, an observation
that agrees with the calculations of Figs. 3 and 4. The
misalignment between the combs and modal pattern (Fig. 4)
corresponds to 9 m, a figure comparable to tolerances for
through-the-wafer ICP etching, which determines the modal
positions.

C. Results that Differ from Beam Theory

The previous section describes most of the measured results.
Occasionally, FPW are measured where the center frequency
and amplitude approximate the calculations, but the separation
between peaks is smaller than the predicted by (8a) and
(8b). Peak separations as close as have been measured. As
described in Appendix C, it is thought that these extra peaks

Authorized licensed use limited to: University of Illinois. Downloaded on January 8, 2010 at 13:10 from IEEE Xplore.  Restrictions apply. 



WEINBERGet al.: MODELING FPW DEVICES 377

are contributed by transverse modes, which result from the fi-
nite plate width. Measurements are presently being conducted
to measure the plate modes interferometrically.

V. CONCLUSIONS

A lumped-parameter model is derived for FPW devices,
which are rectangular plates or diaphragms with structural and
piezoelectric layer and with interdigitated conducting comb
for driving and sensing. This configuration is often used in
micromechanical chemical sensors. The model is based on a
closed-form solution of a resonating beam; however, the results
are applicable to plates supported on four edges.

The model gives a voltage or charge output from the sense
combs as a function of voltage applied to the drive combs. The
analysis predicts the response of the multiple plate modes to
axial tensions and to comb finger dimensions and position rel-
ative to the diaphragm eigenfunctions. These models are much
more detailed than those described in the literature on acoustic
chemical sensors ([1], [2] and others from which these derive)
and are difficult to obtain by finite-element solutions.

In most cases, frequency responses of FPW devices con-
structed from crystalline silicon with deposited aluminum
nitride as the piezoelectric compared well with analytic results.
In a few cases, resonant peaks were spaced more closely that
predicted by the beam theory modal analysis. In these cases,
coincidence of eigenfrequencies from transverse modes is a
likely cause of the extra peaks.

APPENDIX A
MODAL SOLUTIONS FORBUILT-IN ENDS

The eigensolutions of Section II-A are derived for beams with
built-in ends. When thebeam ends are built-in, the displace-
ments and slopes at the ends are zero as follows:

(A.1a)

(A.1b)

where equals the length of beam or diaphragm (Fig. 1).
1) Built-in Ends Without Tension:The micromachined di-

aphragm should approach the built-in case. No tension is the
nominal design condition. With the boundary conditions de-
scribed by (A.1) and , nonzero values for the constants in
(7) are obtained only for . This classic
result duplicates [12, p. 109]. The cosh term becomes large
quickly so that for greater than five

(A.2a)

The exponential terms in (7) are only important near the ends
so that, for , the modes are approximately

(A.2b)

The natural frequency is still described by (6). Depending on
the boundary conditions, the mode shape has changed position
and frequency from those of the pinned case.

2) Built-in Ends with Tension:The micromachined di-
aphragm should approach the built-in case. Tension is the
dominant factor in the resonant frequency sensitivity to thermal

change. No tension is the nominal design condition. With
tension and built-in ends, the eigenvalues are solutions of the
following:

(A.3)

where .
Expand (A.3) into a linear Taylor series about the nominal

solution , which is valid for when sinh
is approximately cosh and very large. The linear expression for
the change in is

(A.4)

where the nominal is given by (A.2a). For chemical sensors
, so that can be omitted in calculating reso-

nant frequency’s thermal sensitivity and the first-order expan-
sion matches that for pinned ends (10b). The eigenfunction will
change shape with increasing tension. Assuming sinh and cosh
are large, the eigenfunction is approximately

(A.5)

Expanding about the nominal solution

(A.6)

APPENDIX B
RADIUS OF CURVATURE AND PIEZOELECTRICTORQUES FOR

MULTILAYER BEAMS

Derived in [11], the structural rigidity and piezoelectric
torques for multilayer plates are summarized. The bending
torque (15) generated by an electric field across the piezoelec-
tric layer is

(B.1)

where
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torque per unit voltage across the piezoelectric layer;
Poisson’s ratio: the term inaccounts for plates versus
thin beams (results for a slender beam can be obtained
by setting );
piezoelectric coupling coefficient;
index for a material layer; the subscriptrepresents
the piezoelectric layer;
distance between piezoelectric material’s center of
area and the diaphragm’s neutral axis for torque
inputs;
Young’s modulus;
layer thickness;
layer cross-sectional area (thickness times width).

A concept well known in conventional stress analysis [15],
the neutral axis for torque inputs is the weighted center of

for the entire composite plate and does not
depend on the magnitude of the torque. The neutral axis for
torque inputs is

(B.2)

where equals the vertical distance from center of area to an
arbitrary reference.

The structural rigidity in (1) is the radius of curvature times
unit bending torque and is calculated by

(B.3)

where equals the area moment of inertia for each layer calcu-
lated about its center of area; equals each layer’s
vertical position measured with respect to the torque neutral
axis.

APPENDIX C
EIGENVALUES WITH LATERAL EDGES

As a first approximation for a rectangular plate, the eigen-
modes in the - and -directions are close to those derived from
beam theory [12], i.e., the displacement is a sinusoid inmulti-
plied by a sinusoid in . From [12, eq. (11-21)], for an isotropic
or orthotropic rectangular plate built-in or simply supported on
four edges, the eigenfrequencies (in hertz) are given approxi-
mately by

(C.1)

where
mode number along length (typically 80 for The
Charles Stark Draper Laboratory Inc.’s FPW de-
signs);
mode number across width;
length of plates (0.0015 m);
width of plates (0.0003 m);

Fig. 8. Resonant frequencies from plate model.

for simple supports and for all edges
built-in;

for simple support;

for built-in;

Young’s modulus;
plate thickness;
mass per unit area.

For a simply supported plate, (C.1) becomes

(C.2)

For the nominal built-in case, the eigenfrequencies are plotted
versus and , the mode numbers along the length and width,
respectively, in Fig. 8. Equations (C.1) and (C.2) duplicate beam
theory when . With and , the built-in’s res-
onant frequency is 0.5% larger than the beam case; thus,
beam theory is adequate for predicting the basic resonances.
Static finite-element results show that the peak displacements
for one- and two-dimensional plate and beam theory are similar,
a consequence of the plate width being greater than the eigen-
mode spatial period.

The plate theory predicts an abundance of additional modes
corresponding to half-wavelengths along the width (Fig. 8). For
example, the 80,1 mode can be close to the 79,2 or 79,3 or 78,3
modes. Assuming that (17) or (18) describes the modal forcing
functions along the width, the excitation should not excite the
higher order modes in. With fingers across the diaphragm, the
modal forcing functions are approximately the Fourier trans-
form of a square wave so that no force exists and the

force is 1/3 the fundamental. Due to sense and drive, the
voltage amplitude is the modal forcing function squared.

Due to machining imperfections, it is possible that modes can
be coupled to one another so that the 79,2 and 78,3 could form a
substantial peak if both are at the same eigenfrequency. Exam-
ples are discussed in Section IV-C.
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