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Abstract: The design of an all-dielectric nanoantenna based on nonradiating “anapole” 
modes is studied for biosensing applications in an aqueous environment, using FDTD 
electromagnetic simulation. The strictly confined electromagnetic field within a circular or 
rectangular opening at the center of a cylindrical silicon disk produces a single point 
electromagnetic hotspot with up to 6.5x enhancement of |E|, for the 630-650 nm wavelength 
range, and we can increase the value up to 25x by coupling additional electromagnetic energy 
from an underlying PEC-backed substrate. We characterize the effects of the substrate design 
and slot dimensions on the field enhancement magnitude, for devices operating in a water 
medium. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Although typical surface-based fluorescence assays for detection of protein or nucleic acid 
molecules for applications that include disease diagnostics [1], genome sequencing [2,3], and 
pathogen sensing [4] are performed upon glass or plastic surfaces, a variety of nanostructured 
optical surfaces have demonstrated the ability to increase detected photon output through the 
mechanisms of enhanced excitation, directional emission and reduced fluorescence lifetimes 
[5–9]. Such structures include plasmonic gratings, nanoantennas, and photonic crystals (PC) 
[10–13], which are each capable of efficiently coupling incident light from a laser into 
surface-confined resonant electric fields (enhanced excitation). PCs have been shown to be 
especially advantageous because their periodic dielectric structures are comprised of materials 
without loss at the critical wavelengths, and thus provide moderately high quality factor (Q-
factor) resonances that generate strongly confined electric fields near the PC surface. We have 
shown that PC-enhanced excitation provides >100x improvements in measured detection 
limits for fluorescent emitters [14]. 

The use of optically resonant metallic nanostructures to control and concentrate light at 
sub-diffraction limit scales is currently a well-established capability [15,16]. Surface 
plasmons, generated by the collective oscillation of conduction electrons near the surface of a 
metal [17,18], have been the subject of enormous interest for biological sensing applications 
where a host of nanoparticle shapes, surface structures, and materials [19,20] have been 
applied for coupling electromagnetic energy into molecules for purposes of label-free 
biosensing [21], fluorescence enhancement [22–24], and surface-enhanced Raman scattering 
(SERS) [25,26]. Plasmonic metal nanoantennas’ ability to drastically enhance the interaction 
between a single quantum emitter and its surrounding photonic environment is not only 
capable of luminescence enhancement, but also ultrafast emission in the picosecond range 
[27,28] and directional emission control [29,30] – making them nearly ideally suited for 
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ultrasensitive biodetection of single molecules. However, energy transfer to the free electrons 
in the metal generates losses, which not only quench fluorescence emission, but also cause 
substantial Joule heating of the antenna and its environment [31] with sufficient magnitude to 
melt nanoparticles [32] and to kill cells [33,34]. Thus, plasmonic nanoantennas face 
fundamental limitations for applications that require moderate temperatures [35] (such as 
biosensing of proteins, nucleic acids, and small molecules) and high excitation powers [36] 
desired for fluorescence excitation. 

Nanoantennas capture illumination from a source in the far field and compress its optical 
energy into volumes smaller than the diffraction limit [37–39]. The strong local 
electromagnetic field enhancements (called “hotspots”) enable a wide range of useful 
applications, such as SERS [40], surface-enhanced infrared absorption (SEIRA) [41–45], 
spontaneous emission enhancement [46], photohermal biosensing [47], nonlinear 
nanophotonics [48,49], and nanolasing [50,51]. To achieve large enhancement of the hotspot 
localized power, which scales with the square of the magnitude of the electric field |E|2, a 
wide variety of approaches have been reported, including manipulation of the antenna’s 
physical dimensions and materials to tune the resonant wavelength [44,52], using low-loss 
materials [53,54], impedance matching the input excitation to the nanoantenna [55], and 
engineering Fano resonances [43,56,57]. To achieve the smallest hotspot volumes and the 
largest field enhancement factors, plasmonic metal dimer structures have been the most 
widely studied approach, in which reduced gap size between adjacent metal nanostructures 
generates the greatest amplification factor [58,59]. When entering the sub-nanometer gap 
regime, however, it has recently been recently shown that quantum mechanical effects such as 
nonlocality and electron tunneling stop the hotspot intensity from further increasing 
monotonically [60–62], and the regime in which biological molecules such as proteins or 
nucleic acids, no longer fit into the hotspot volume. Thus, to further boost hotspot intensity 
within a nanoantenna, using designs that do not induce heating of biomolecules, new 
strategies are needed. 

Recently, dielectric nanoantennas comprised of spheres, cylinders, or nanogap dimers of 
Si, Ge, TiO2, and GaP have been demonstrated as effective alternatives to plasmonic metal 
antennas [35,63–65]. While the selected materials have little or no loss in the visible or near 
IR wavelength bands, the dielectric nanoantenna structures support spectral (Mie) resonances 
that can enhance local near-field electromagnetic intensity [66,67]. Importantly, the dielectric 
nanoantennas operate through a fundamentally different physical phenomenon from dielectric 
microresonators (such as PCs or whispering gallery mode structures) that use high quality 
(Q)-factors to generate field enhancement. Dielectric nanoantennas use small modal volumes 
with low Q-factors, which provide a broad spectral range for coupling [68]. Furthermore, 
while metal nanoparticles feature only electric field resonant modes, dielectric nanoantennas 
have both electric and magnetic modes with similar magnitudes [69–71], and thus offer novel 
opportunities to engineer the light scattering, radiative decay constants of emitters [35,72], 
control of directional light emission [73,74], and enhancement of the Raman scattering 
process. Recent theoretical treatments [75] and experimental demonstrations of Si and GaP 
dielectric nanoantennas clearly prove their capabilities for low heat conversion [63,64], 
fluorescence lifetime reduction [35], fluorophore emission enhancement (up to 3600x) 
[35,65], and SERS enhancement [64]. 

Our recent work that experimentally demonstrates hybrid coupling between PC moderate 
Q-factor “micro” cavities and nanoantennas on a PC surface opens opportunities to increase 
available electromagnetic enhancement factors by additional orders of magnitude, while 
providing imaging detection instrumentation methods that are capable of measuring the 
output of many nanoantennas in parallel. Integrating nanoantennas with complementary 
photonic building blocks, such as evanescent diffraction orders [44,76,77], plasmonic crystals 
[54], photonic crystals [78] and Fabry−Pérot (FP) cavities [45,79,80] can combine the 
advantages of both deep-subwavelength field localization and extended storage of 
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electromagnetic energy. The nanoantenna-cavity hybrid approach has been shown [81] to 
boost hotspot intensity up to one order of magnitude, compared to excitation of a solitary 
nanoantenna that is simply illuminated with a laser in the far field, and therefore can generate 
more efficient light-matter interactions. Thus, we consider the integration of anapole mode 
resonators with an external structure to obtain field enhancements greater than achievable 
with an anapole nanoantenna alone. 

Anapoles represent a class of antenna structures that support electric and toroidal dipole 
moments that result in destructive interference of radiation fields, which is observable in the 
far field as a pronounced dip in the scattered spectrum at a specific wavelength [82]. While 
anapoles have been the subject of intense research interest and have been studied using 
structures that operate in the microwave spectrum [83], recently anapole nanoantennas have 
been reported at optical frequencies [84] using silicon nanodisks fabricated upon quartz 
substrates [85]. 

For a full explanation of anapole nanoantenna physics at optical frequencies, the reader is 
referred to [85,86]. Briefly, an anapole mode occurs when an electric dipole and a toroidal 
dipole can be accommodated in the same structure, so that the respective radiation patterns of 
the electric and toroidal dipole modes can destructively interfere, leading to total scattering 
cancellation in the far field, with non-zero near-field excitation. For biosensing applications, 
anapole dielectric nanoantennas are interesting for several reasons: 1. The anapole mode 
generates a highly concentrated electromagnetic near-field in the center of the structure, 2. 
The electric fields associated with the mode are confined within the nanoantenna itself, 
without extending strongly into the surrounding media or to neighboring nanoantennas. 3. 
The structure is simple to fabricate using well-characterized materials. 4. The anapole 
wavelength is easily measured by observing the far field scattered spectrum of white light 
from each individual structure. 5. The anapole mode can be easily excited by external plane 
wave illumination. 6. As an all-dielectric structure, anapole nanoantennas will not suffer the 
effects of optical loss and heating that are common to all metal-based plasmonic structures. 

To our knowledge, anapole dielectric nanoantenna structures have not been previously 
considered for biosensing applications. To enable the structure to serve effectively for 
biodetection, we propose a modification to the silicon nanodisk described in [85] to 
incorporate a nanohole or nanoslot opening at the disk center [87,88], to coincide with the 
location of the electric field node of the anapole mode. The hole is a small perturbation to the 
overall structure, representing a precisely-defined location where light-biomaterial interaction 
can occur for exciting fluorescent reporters. Further, by fabricating the anapole mode 
resonator over a dielectric thin film of defined thickness on top of a metal back-reflector, we 
may take advantage of the hybrid coupling effect to achieve even greater field enhancements. 
Here, we consider the design of an anapole mode nanoantenna in the context of enhancing 
localized electromagnetic field intensity for the purpose of enhanced excitation of photon 
emitters. Our analysis does not consider independent enhancement mechanisms that may also 
occur due to the Purcell effect or due to enhanced collection efficiency into light collection 
optics, whose effects are known to multiply with enhanced excitation [89,90]. 

2. Device structure 

While anapole mode structures have been described in a variety of configurations [91–94], 
here we focus specifically on the design, optimization, and achievable field enhancement 
performance for biosensing applications, where the device surface would be covered in 
aqueous media, and the enhanced fields are used to excite fluorescent dye molecules attached 
to biomolecules (such as nucleic acids or proteins), with excitation wavelengths in the visible 
spectrum. We also choose materials that are readily available for manufacturable 
microfabrication and dimensions that are within the capabilities of lithography approaches 
used in silicon integrated circuit manufacturing. Thus, we anticipate a structure that could be 
produced uniformly with reproducibility in a conventional integrated circuit foundry. 
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structure is illuminated with a normal-incidence plane wave with a magnitude of 1 V/m, an 
emitter inside the electromagnetic hotspot will emit photons with a scaling factor that 
multiplies with the power associated with the electromagnetic field. Thus, fluorophore 
excitation enhancement will scale with the square of the electric field magnitude 
enhancements predicted in Fig. 10 generating up to 480 gains. Further gains in hotspot-
associated emission intensity may also be achieved through the mechanism of Purcell 
enhancement, in which the fluorescent lifetime of emitters is reduced when they are located 
within an optical resonator [88]. Through this mechanism, a single fluorescent emitter may be 
“recycled” more quickly through its transition from the excited state to the ground state, and 
thus more photons/fluorophore are observed in the far field. Finally, emitted photons 
originating from the center of the anapole mode will be directed outward by the dispersion of 
the nanoantenna, providing an opportunity for a further “enhanced extraction” effect. Due to 
the presence of the underlying mirror, emitted photons in the downward direction will have 
the opportunity to back-reflect to the optics that gather the fluorescent signal (such as a 
microscope objective). Enhanced extraction effects are a combined function of the spatial 
distributions of photons originating in the anapole mode center and the numerical aperture of 
the light collection optics [102], and thus must be considered separately from enhancement of 
photon excitation due to hotspot electric field intensity. 

Because the effects of these enhancement mechanisms are multiplicative, we believe that 
the structure presented here is promising for enhanced fluorescence single-molecule 
biosensing applications with very substantial overall enhancement for emitters located within 
the well-defined hotspot volume, where the volumes shown here range from 0.001 – 0.065 fL. 

The overall enhancement is calculated using the expression ( )2

0/p ExF E E G× × , where pF

represents the Purcell factor and ExG represents the gain from enhanced efficiency of 

extraction of emitted photons from the hotspot into the numerical aperture of light collection 
optics positioned above the device. For example [88], reports Purcell enhancements of 550x 
and 740x at two different wavelengths for a perfect dipole emitter in an anapole structure. For 
the water-immersed structures reported here, we estimate a potential Purcell factor value of 

210pF x= , calculated as the ratio of energy dissipation rates of an electric dipole 0/P P  

[103]. This value is derived from the FDTD software package that offers a methodology for 
estimating Purcell enhancements [92] in which the structure is excited with a y-polarized 
dipole placed inside the hotspot of the disk. As an initial estimate of the ExG available from 

enhanced extraction effects [104], reports a 20-30x enhanced collection of emission from a 
dipole upon a PEC backed substrate with a 0.1-1 numerical aperture objective. Therefore, the 
prospects for achieving overall gains for fluorescent emitters within the anapole mode 

nanoantenna of ( ) ( ) ( ) ( )2

0/ 210 480 25 2,520,000p ExF E E G× × = × × =  would appear to be 

feasible, and is motivating for experimental realization and testing of the simulated structures 
reported in this work. 

A representative metal-based structure with similar hotspot volume is the subwavelength 
aperture zero mode waveguides (ZMWs), comprised of a circular hole in an aluminum thin 
film to provide observation volumes in the zeptoliter range. The small volume of confinement 
allows for single molecule characterization and further optical application including real-time 
imaging of protein-protein interactions, real-time observation of enzymatic activity, and 
single molecule DNA sequencing [105–109], but does not offer the opportunity for resonant 
field enhancement, except by some considerations [110,111]. 

We envision applications for the structure in which an array of anapole mode 
nanoantennas may be prepared with individual capturing molecules located within each 
central hole, and illuminated by an external excitation source while biomolecules in the liquid 
media bind/unbind to the molecules in the hotspots. Due to the enhancements afforded to 
fluorophores captured within the hotspot, biomolecular events occurring there may be 
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observed with high signal-to-noise, representing the emissions from single fluorophores 
associated with single molecules. Observation of the rates of biomolecule capture/release and 
fluorophore emission wavelength will enable measurement of single biomolecule binding 
dynamics and processes that include conformation change and association/dissociation. It is 
also possible to envision structures in which a pore is included inside the substrate of the 
anapole mode nanoantenna, exactly beneath of its embedded hole, so that molecules may be 
rapidly excited while they flow through the structure. 
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