Journal articles

Link to Google Scholar Page

1990 | 2000 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |

  1. “A portable, digital resolution, and smartphone-linked Photonic Resonator Absorption Microscope (PRAM Mini) for point-of-care diagnostics,” K. Khemtonlang, W. Liu, H.-K. Lee, W. Wang, S. Li, Z. Yuan, S. Shepherd, D. Diel, Y. Fang, and B.T. Cunningham, Biomedical Optics Express, Vol. 15, No. 10, p. 5691-5705, 2024.
  2. “Dynamic and large field of view photonic resonator absorption microscopy for digital resolution detection of nucleic acid and protein biomarkers,” W. Liu, T. Ayupova, W. Wang, S. Shepherd, X. Wang, L.D. Akin, M. Kohli, U. Demirci, and B.T. Cunningham, Biosensors and Bioelectronics, Vol. 264, p. 116643, 2024.
  3. “Hybrid interfacial cryosoret nano-engineering in Photonic Resonator Interferometric Scattering Microscopy:  Insights from nanoparticles and nano-assemblies,” L. Liu, S. Bhaskar, and B.T. Cunningham, Applied Physics Letters, Vol. 124, No. 3, DOI 10.1063/5.0203701, 2024.
  4. “Current smartphone-assisted point-of-care cancer detection: Towards supporting personalized cancer monitoring,” L.T.P. Le, A. H.-Q. Nguyen, L.M.T. Phan, H.T.T. Ago, X. Wang, B.T. Cunningham, E. Varera, R. Bashir, A.W. Taylor-Robinson, C.D. Do, TrAC Trends in Analytical Chemistry, DOI: 10.1016/j.trac.2024.117681, 2024.
  5. Photonic crystal-coupled enhanced steering emission: A prism-Free, objective-free and metal-free lossless approach for biosensing,” S. Bhaskar, W. Liu, J. Tibbs, and B.T. Cunningham, Applied Physics Letters, Vol 124, No. 16, p. 161102, DOI: 10.1063/5.0203999, 2024.
  6. “Photonic-plasmonic coupling enhanced fluorescence enabling digital-resolution ultrasensitive protein detection,” P. Barya, Y. Xiong, S. Shepherd, R. Gupta, L. Akin, J. Tibbs, H. Lee, S. Singamaneni, B.T. Cunningham, Small, https://doi.org/10.1002/smll.202207239, 2023.
  7. “GeauxTrace: A scalable privacy-protecting contact tracing app design using blockchain,” T. Lu, F. Qi, J. Ner, T. Feng. B.T. Cunningham, and L. Peng, Proceedings of the IEEE/ACM International Symposium on Big Data Computing, pp. 100-109, doi: 10.1109/BDCAT56447.2022.00020, 2022.
  8. Photonic crystal enhanced fluorescence: A review on design strategies and applications,” Y. Xiong, S. Shepherd, J. Tibbs, A.K. Bacon, W. Liu, L.D. Akin, T. Ayupova, S. Bhaskar, and B.T. Cunningham, Micromachines, Vol. 14, p. 668-704, 2023.
  9. Rapid detection of intact SARS-CoV-2 using designer DNA nets and a pocket-size smartphone-linked fluorimeter,” H.K. Lee, W. Wang, N. Chauhan, Y. Xiong, N. Magazine, O. Valdezcruz, D.Y. Kim, T. Liu, W. Huang, X. Wang, and B.T. Cunningham, Biosensors and Bioelectronics, Vol. 229, p. 115228-115241, 2023.
  10. A Photonic Resonator Interferometric Scattering Microscope for Label-free Detection of Nanometer-Scale Objects with Digital Precision in Point-of-Use Environments,” L. Liu, J. Tibbs, N. Li, A. Bacon, S. Shepherd, H.K. Lee, N. Chauhan, U. Demirci,, X. Wang, and B.T. Cunningham, Biosensors and Bioelectronics, Vol. 228, p. 115197-115206, 2023.
  11. Review of HIV self testing technologies and promising approaches for the next generation,” A.K. Bacon, W. Wang, H. Lee, S. Umrao, D. Atkin, P.D. Sinawang, K. Khemtonglang, A. Tan, S. Hirshfield, U. Demirci, X. Wang, and B.T. Cunningham, Biosensors, Vol. 13, No. 2, p. 298-327, 2023.
  12. A target recycling amplification process for the digital detection of exosomal microRNAs through photonic resonator absorption microscopy,” X. Wang, S. Shepherd, N. Li, C. Che, T. Song, Y. Xiong, I. Palm, B. Zhao, M. Kohli, U. Demirci, Y. Lu, B.T. Cunningham, Angewandte Chemie, https://doi.org/10.1002/anie.202217932, 2022.
  13. Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus,” N. Chauhan, Y. Xiong, S. Rea, A. Dwivedy, N. Magazine, L. Zhou, X. Jin, T. Zhang, B.T. Cunningham, S. Yao, W. Huang, and X. Wang, Journal of the American Chemical Society, doi.org/10.1021/jacs.2c04835, 2022.
  14. Smartphone clip-on instrument and microfluidic processor for rapid sample-to-answer detection of Zika virus in whole blood using spatial RT-LAMP,” A. Jackelow, H.K. Lee, W. Wang, H.T. Hoang, A. Bacon, F. Sun, S. Chae, V.V. Kindratenko, K. Koprowski, R.A. Stavins, D. Ceriani, Z. Engelder, W.P. King, M.N. Do, R. Bashir, E. Valera, B.T. Cunningham, Analyst, Vol. 147, p, 3838-3853, 2022.
  15. Digital resolution biosensing with single quantum dot tags through the combined effects of photonic crystal enhanced excitation, directional extraction, and blinking suppression ,” Y. Xiong, Q. Huang, T.D. Canady, P. Barya, O,H. Arogundade, C.M. Race, S. Liu, A.M. Smith, M. Kohli, and B.T. Cunningham, Nature Communications, Vol. 13, p. 4647-4661, DOI: 10.1038/s41467-022-32387-w, June 2022..
  16. “Microscopies enabled by photonic metamaterials,” Y. Xiong, N. Li, C. Che, W. Wang, P. Barya, L. Liu, W. Liu, X. Wang, S. Wu, H. Hu, B.T. Cunningham, Sensors Journal, Vol. 22, p. 1086-1115, 2022.
  17. “Digital-resolution and highly sensitive detection of multiple exosomal small RNAs by DNA toehold probe-based photonic resonator absorption microscopy,” B. Zhao, W. Wang, N. Li, T. Garcia-Lezana, C.Che, X. Wang, A. Villanueva, B.T. Cunningham, Talanta, Vol. 241, p. 123256, 2022.
  18. Accelerated Digital Biodetection Using Magneto-plasmonic Nanoparticle-Coupled Photonic Resonator Absorption Microscopy“, C. Che, R. Xue, N. Li, P. Gupta, X. Wang, B. Zhao, S. Singamaneni, S. Nie, and B. T. Cunningham, ACS Nano, Vol. 16, No. 2, p. 2345-2354, 2022.
  19. Label-Free Digital Detection of Intact Virions by Enhanced Scattering Microscopy“, N. Li*X. Wang*J. Tibbs*C. CheA. S. PeinettiB. ZhaoL. LiuP. BaryaL. CooperL. RongX. WangY. Lu, and B. T. Cunningham, Journal of the Americal Chemical Society, Vol. 144, No. 4, p. 1498–1502, 2022.
  20. Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing“, N. Li, B. Zhao, R. Stavins, A.S. Peinetti5, N. Chauhan, R. Bashir, B.T. Cunningham, W.P. King, Y. Lu, X. Wang, E. Valera, Current Opinion in Solid State and Material Science, Special Issue on COVID Response, Vol. 26, p. 100966, 2022.
  21. A portable photonic resonator absorption microscope for point of care digital resolution nucleic acid molecular diagnostics“, S. Ghosh*, N. Li*, Y. Xiong, Y.-G. Ju, M.P. Rathslag, E. Onal, E. Falkiewicz, M. Kohli, and B.T. Cunningham, Biomedical Optics Express, Vol. 12, No. 8, p. 4637-4650, 2021.
  22. Photonic resonator interferometric scattering microscopy“, N. Li*, T.D. Canady*, Q. Huang, G.A. Fried, X. Wang and B.T. Cunningham, Nature Communications, Vol. 12, p. 1744, 2021.
  23. Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy“, B. Zhao*, C. Che*, W. Wang*, N. Li, and B.T. Cunningham, Talanta, Vol. 225, p. 122004, 2021.
  24. Rapid isothermal amplification and portable detection system for SARS-CoV-2,” A. Ganguli, A. Mostafa, J. Berger, M.Aydin, F. Sun, E. Valera, B.T. Cunningham, W.P. King, and R. Bashir, Proceedings of the National Academy of Sciences. https://doi.org/ 10.1073/pnas.2014739117
  25. Enhanced plasmonic photocatalysis through synergisticplasmonic–photonic hybridization“, Q. Huang, T.D. Canady, G. Gupta, N. Li, S. Singamaneni and B.T. Cunningham, ACS Photonics, Vol. 7, No. 8, p. 1994-2001, 2020.
  26. Digital resolution biomolecular sensing for diagnostics and life science research” (invited critical review), Q. Huang*, N. Li*, H. Zhang, C. Che, F. Sun, Y. Xiong, T.D. Canady and B.T. Cunningham, Lab on a Chip, 2020, 20, 2816 https://doi.org/10.1039/D0LC00506A
  27. Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract,”  F. Sun, A. Ganguli, J. Nguyen, R. Brisbin, K. Shanmugam, D.L. Hirschberg, M. B. Wheeler, R. Bashir, D.M. Nash, and B.T. Cunningham, Lab on a Chip, Vol. 20, p. 1621-1627, 2020. DOI: 10.1039/D0LC00304B
  28. Development of a linker mediated immunoassay using chemically transitioned nanosensors,” L. Smith, M. Willard, J. Smith, and B.T. Cunningham, Analytical Chemistry, Vol. 92, No. 5, p. 3627-3635, 2020.
  29. High-fidelity single molecule quantification in a flow cytometer using multiparametric optical analysis,” L.D. Smith, Y.Liu, M.U. Zahid, T.D. Canady, L. Wang, M. Kohli,  B.T. Cunningham, and A.M. Smith, ACS Nano, Vol. 14, No. 2, p. 2324-2335, 2020.
  30. Activate Capture and Digital Counting (AC+ DC) assay for protein biomarker detection integrated with a self-powered microfluidic cartridge“, C. Che, N. Li, K.D. Long, M.Á.A. Pastor, T.D. Canady, Q. Huang, U. Demirci and B.T. Cunningham, Lab on a Chip, 2019, 19, 3943-3953 https://doi.org/10.1039/1473-0189/2001
  31. Digital resolution detection of miRNA with single bases selectivity by Photonic Resonator Absorption Microscopy“, T.D. Canady*, N. Li*, L.D. Smith, Y. Lu, M. Kohli, A.D. Smith, and B.T. Cunningham, Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1904770116
  32. Microcavity-mediated spectrally tunable amplification of absorption in plasmonic nanoantennas“, Q. Huang, and B.T. Cunningham, Nano Letters, Vol. 19, No. 8, p. 5297-5303, 2019. https://doi.org/10.1021/acs.nanolett.9b01764
  33. Spectrometric smartphone-based system for ibuprofen quantification in commercial dosage tablets,” M.A. Aguirre, K.D. Long, and B.T. Cunningham, Journal of Pharmaceutical Sciences, Vol. 108, p. 2593-2598, 2019. https://doi.org/10.1016/j.xphs.2019.03.010.
  34. Design of anapole mode electromagnetic field enhancement structures for biosensing applications,” L. Sabri, Q. Huang, J.-N. Liu, and B.T. Cunningham, Optics Express, Vol. 27, No. 5, p. 7196-7212, 2019. https://doi.org/10.1364/OE.27.007196
  35. Analysis of paper-based colorimetric assays with a smartphone spectrometer,” E. Woodburn, K.D. Long, and B.T. Cunningham, IEEE Sensors Journal, Vol. 19, No., 2, p. 508-514, 2019.
  36. Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system,” M.A.A. Aguirre, K.D. Long, A. Canals, and B.T. Cunningham, Food Chemistry,Vol. 272, p. 141-147, 2019.
  37. Detection and digital resolution counting of nanoparticles with optical resonators and applications in biosensing,” M.A. Aguirre, K.D. Long, N. Li, S.L. Manoto, and B.T. Cunningham, Chemosensors (Invited Review), Vol. 6, No. 2, p. 13, 2018 doi:10.3390/chemosensors6020013.
  38. Quantitative analysis of focal adhesion dynamics using Photonic Resonator Outcoupler Microscopy (PROM)“, Y. Zhuo, J.S. Choi, T. Marin, B. Harley, and B.T. Cunningham, Light Science and Applications, DOI 10.1038/s41377-018-0001-5, 2018.
  39. “An automated microfluidic assay for photonic crystal enhanced detection and analysis of an antiviral antibody cancer biomarker in serum,” C.M. Race, L.E. Kwon, M.T. Foreman, Q. Huang, H. Inan, S. Kesiraju, P. Le, S.J. Lim, A.M. Smith, R.C. Zangar, U. Demirci, K.S. Anderson, and B.T. Cunningham, IEEE Sensors Journal, Vol. 18, No. 4, pp. 1464-1473, DOI:10.1109/JSEN.2017.2777529, 2018.
  40. Nanoantenna-microcavity hybrids using highly cooperative plasmic-photonic coupling,” J.-N. Liu, Q. Huang, K.-K. Liu, S. Singamaneni, and B.T. Cunningham, Nano Letters, Vol. 17, No. 12, p. 7569-7577, 2017.
  41. Quantum dot emission modulation using piezoelectric photonic crystal MEMS resonators,” G.G. See, Anming Gal, L. Xu, R. Nuzzo, S. Gong, and B.T. Cunningham, Optics Express, Vol. 25, No. 21, p. 25831-25841, 2017.
  42. Comparison of methods study between a photonic crystal biosensor and certified ELISA to measure biomarkers of iron deficiency in chronic kidney disease patients,” R. Peterson, K. Wilund, B.T. Cunningham, and J. Andrade, Sensors, Vol. 17, p. 2203, 2017.
  43. Integrated spectroscopic analysis system with low vertical height for measuring liquid or solid assays,” Y. Wan, J.A. Carlson, S. Al-Mulla, P. Wang, K. Long, B. Kesler, P.Su, J. Dallesasse, and B.T. Cunningham, Sensors and Actuators B – Chemical, Vol. 255, p. 935-943, 2017.
  44. Mobile platform for multiplexed detection and differentiation of disease-specific nucleic acid sequences, using microfluidic loop-mediated isothermal amplification and smartphone detection,” W. Chen, H. Yu, F. Sun, A. Ornob, R. Brisbin, A. Ganguli, V. Vemuri, P. Strzebonski, G. Cui, K. Allen, S. Desai, W. Lin, D. Nash, D. Brooks, R. Bashir, and B.T. Cunningham, Analytical Chemistry, Vol. 89, No. 21, p. 11219-11226, 2017.
  45. Resonant mode engineering using low-index porous silicon dioxide in a photonic crystal sensor,” Y. Wan, N.A. Krueger, C. Ocier, P. Su, P.V. Braun, and B.T. Cunningham, Advanced Optical Materials, Vol. 5, No. 21, 2017.
  46. Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer,” Kenneth D. Long, Elizabeth V. Woodburn, Huy M. Le, Utsav K. Shah, Steven S. Lumetta and Brian T. Cunningham, Lab on a Chip, Vol. 17, No. 19, P. 3246-3257, 2017.
  47. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care,” A. Ganguli, A. Ornob, H. Yu, G.L. Damhorst, W. Chen, F. Sun, A. Bhuiya, B.T. Cunningham, and R. Bashir, Biomedical Microdevices, Vol. 19, No. 73, 2017. DOI 10.1007/s10544-017-0209-9.
  48. Isolation, detection, and quantification of cancer biomarkers in HPV-associated malignancies,” H. Inan, S. Wang, F. Inci, B. Murat, R.C. Zangar, S. Kesiraji, K.S. Anderson, B.T. Cunningham, U. Demirci, Scientific Reports, Vol. 7, p. 3322, DOI:10.1038/s41598-017-02672-6, 2017.
  49. Innovative techniques for evaluating behavioral nutrition interventions,” R.E. Scherr, K.D. Laugero, D.J. Graham, B.T. Cunningham, L. Jahns, K.R. Lora, M. Reicks, and A.R. Mobley, Advances in Nutrition, Vol. 8, p. 113-125, 2017.
  50. Photonic Crystals: Emerging biosensors for point-of-care applications,” H. Inan, M. Poyraz, F. Inci, M.A. Lifson, M. Baday, B.T. Cunningham, and U. Demirci, Chemical Society Reviews, Vol. 46, p. 366-388, 2017.
  51. Quantitative imaging of cell membrane-associated mass density using photonic crystal enhanced microscopy (PCEM),” Y. Zhuo, J.S. Choi, T. Marin, H. Yu, B.A. Harley, and B.T. Cunningham, Progress in Quantum Electronics, Vol. 50, p. 1-18, 2016.
  52. Porous photonic crystal external cavity laser biosensor,” Q. Huang, J. Peh, P.J. Hergenrother, and B.T. Cunningham, Applied Physics Letters, Vol.109, No. 7, p. 071103-071105, 2016.
  53. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera,” Y. Wan, J. Carlson, B. Kesler, W. Peng, P. Su, S. Al-Mulla, S.J. Lim, A. Smith, J. Dallesasse, and B.T. Cunningham, Nature Scientific Reports, doi:10.1038/srep29117, 2016.
  54. Enhanced emission of quantum dots embedded within the high-index dielectric regions of photonic crystal slabs,” G. See, M. Naughton, L. Xu, P.J.A. Kenis, and B.T. Cunningham, Applied Physics Letters, Vol. 108, No. 17, p. 171108, 2016.
  55. Characterization of drug authenticity using thin layer chromatography imaging with a mobile phone,” H. Yu, H. Le, E. Kaale, K.D. Long, T. Layoff, S.C. Lumetta, and B.T. Cunningham, Journal of Pharmaceutical and Biomedical Analysis, Vol. 125, p. 85-93, 2016.
  56. Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing,” L. Kwon, K.D. Long, Y. Wan, H. Yu, and B.T. Cunningham, Biotechnology Advances, Vol. 34, p. 291-304, 2016.
  57. Application of photonic crystal enhanced fluorescence to detection of low serum concentrations of human IgE antibodies specific for a purified cat allergen (Fel d1),” Y. Tan, J. Halsey, T. Tang, S. Wetering, E. Taine, M. Cleve, and B.T Cunningham, Biosensors and Bioelectronics, Vol. 77, p. 194-201, 2016.
  58. Review of recent advances in biosensing with photonic crystals,” B.T. Cunningham, M. Zhang, Y. Zhuo, L. Kwon, and C. Race, IEEE Sensors Journal, Special Issue featuring best papers from the 2014 IEEE Sensors Conference, Vol. 16, No. 10, p. 3349-3366, 2016.
  59. Lasing emission from plasmic nano-dome arrays,” H.-Y. Wu, L. Liu, M. Lu, and B.T. Cunningham, Advanced Optical Materials, Vol. 4, No. 5, p. 708-714, 2016.
  60. Smartphone-imaged HIV-1 reverse transcription loop-mediated isothermal amplification (RT-LAMP) on a chip from whole blood,” . G.L. Damhorst, C. Duarte-Guevara, W. Chen, T. Ghonge, B.T. Cunningham, and R. Bashir, Engineering, Vol. 1, No. 3, p. 324-335, 2015.
  61. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Y. Tan, T. Tang, H. Xu, C. Zhu, and B.T. Cunningham, Biosensors and Bioelectronics, Vol. 15, No. 73, p. 32-40, 2015.
  62. Label-free biosensor imaging on photonic crystal surfaces,” Y. Zhuo and B.T. Cunningham, Sensors Journal, Invited Review, Vol. 15, No. 9, p. 21613-21635, 2015.
  63. Planar photonic crystal biosensor for quantitative label-free cell attachment microscopy,” W. Chen, K.D. Long, J. Kurniawan, M. Hung, H. Yu, B.A. Harley, and B.T. Cunningham, Advanced Optical Materials, Vol. 3, No. 11, p. 1623-1632, 2015. DOI 10.1002/adom201500260.
  64. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photon-ic crystal biosensor,” R.D. Peterson, W. Chen, B.T. Cunningham, and J.E. Andrade, Biosensors and Bioelectronics, Vol. 74, p. 815-822, 2015.
  65. Polarization controlled output of electrohydrodynamic jet printed quantum dot embedded photonic crystals for display applications,” G. See, L. Xu, E.Sutanto, A. Alleyne, R. Nuzzo, and B.T. Cunningham, Applied Physics Letters, Vol. 107, No. 5, p. 051101-051103, 2015.
  66. Region specific enhancement of quantum dot emission using interleaved two-dimensional photonic crystals,” G.G. See, M.S. Naughty, T. Tang, Y. Bonita, J. Joo, P. Trefonas, K. Deshpande, P.J.A. Kenis, R.G. Nuzzo, and B.T. Cunningham, Applied Optics, Vol. 54, No. 9, p. 2302-2308, 2015.
  67. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon photonic crystal protein arrays“, S.I. Jones. Y. Tan, M. Shamimuzzaman, S. George, B.T. Cunningham, and L. Vodkin, Plant Physiology, Vol. 167, No. 3, p. 639-649, 2015.
  68. Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging,” J.-N. Liu, M.V. Schulmerich, R. Bhargava, and B.T. Cunningham, Optics Express, Vol. 22, No. 15, p. 18142-18158, 2014.
  69. Smartphone instrument for portable enzyme linked immunosorbent assays,” K.D. Long, H. Yu, and B.T. Cunningham, Biomedical Optics Express, Vol. 5, No. 11, p. 3792-3806, 2014.
  70. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication” H. Hu, Y. Zhuo, M. Oruc, B.T. Cunningham, W. King, Nanotechnology, Vol. 25, p. 455301-455309, 2014.
  71. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy,” W. Chen, K.D. Long, H. Yu, Y. Tan, J.S. Choi, B.A. Harley, and B.T. Cunningham, Analyst, Vol. 139, No. 22, p. 5955-5964, 2014.
  72. Smartphone fluorescence spectroscopy,” H. Yu, Y. Tan, and B.T. Cunningham, Analytical Chemistry, Vol. 86, No. 17, p. 8805-8813, 2014.
  73. Plasmonic external cavity laser refractometric sensor,” M. Zhang, M. Lu, C. Ge, and B. T. Cunningham, Optics Express, Vol. 22, No. 17, p. 20347-20357, 2014.
  74. Detection of protein–small molecule binding using a self-referencing external cavity laser biosensor,” M. Zhang, J. Peh, P. J. Hergenrother, and B. T. Cunningham, Journal of the American Chemical Society, vol. 136, pp. 5840-5843, 2014.
  75. Recognition of Apoptotic Cells by Viable Cells Is Specific, Ubiquitous, and Species-Independent: Analysis Using Photonic Crystal Biosensors,” G. Pattabiraman, E.A. Lidstone, B.T. Cunningham, D. Ucker, Cell Death and Differentiation, Mol. Biol. Cell June 1, 2014 vol. 25 no. 11 1704-1714.
  76. Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor,” H.-Y. Wu, C.J. Choi, and B.T. Cunningham, Nanoscale, Nanoscale, Vol. 6, No. 10., p, 5162-5171, 2014..
  77. Single nano particle detection using photonic crystal enhanced microscopy,” Y. Zhuo, H. Hu, W. Chen, M. Lu, L. Tian, H. Yu, K.D. Long, E. Chow, W.P. King, S. Singamaneni, and B.T. Cunningham, Analyst, Vol. 139, No. 5, p. 1007-1015, 2014.
  78. Nanostructured optical photonic crystalbiosensor for HIV viral load measurement,” H. Shafiee, E. Lidstone, M. Jahangir, F. Inci, D. Kuritzkes, B.T. Cunningham, and U. Demirci, Nature Scientific Reports, Vol. 4, Article 4116, doi:10.1038/srep04116, 2014.
  79. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nano particles,” R.D. Peterson, B.T. Cunningham, and J. Andrade, Biosensors and Bioelectronics, Vol. 56, p. 320-327, 2014.
  80. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning,” Y. Tan, E. Sutanto, A.G. Alleyne, and B.T. Cunningham, Journal of Biophotonics, Vol. 3-4, p. 266-275, 2014.
  81. Electrohydrodynamic Jet Printing of Micro-optical Devices,” E. Sutanto, S. Onses, Y. Tan, B.T. Cunningham, and A. Alleyne, Manufacturing Letters, Vol. 2, No. 1, p. 4-7, 2014.3.
  82. Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating,” B. Kwon, M. Seong, J.-N. Liu, M.R. Rosenberger, M.V. Schulmerich, R. Bhargava, B.T. Cunningham, and W.P. King, Journal of Applied Physics, Vol. 114, p. 153511, 2013. DOI: 10.1063/1.4825313
  83. Photonic crystal enhanced microscopy for imaging of live cell adhesion,” W. Chen, K.D. Long, M. Lu, V. Chaudhery, H. Yu, J.S. Choi, J. Polans, Y. Zhuo, B.A. Harley, and B.T. Cunningham, Analyst, Vol. 138, No. 20, p. 5886-5894, 2013.
  84. Sensitive Detection of Protein and miRNA Cancer Biomarkers using Silicon-Based Photonic Crystals and A Resonance Coupling Laser Scanning Platform,” S. George, V. Chaudhery, Y. Tan, M. Lu, and B.T. Cunningham, Lab on a Chip, Vol 13, p. 4053-4064, 2013 PMID: 23963502.
  85. Enhanced fluorescence emission using a photonic crystal coupled to an optical cavity,” A. Pokhriyal, M. Lu, V. Chaudhery, S. George, and B.T. Cunningham, Applied Physics Letters,Vol. 102, pp. 221114-221116, 2013. PMCID: PMC3689753
  86. Label-Free Biodetection using a Smartphone,” D. Gallegos, K. Long, H. Yu, P. Clark, Y. Lin, , S. George, P. Nath, and B.T. Cunningham, Lab on a Chip,Vol. 13, p. 2124-2132, 2013. DOI: 10.1039/C3LC40991K.
  87. Distributed Feedback Laser Biosensor Noise Reduction,” Y. Tan, A. Chu, M.Lu and B.T. Cunningham, IEEE Sensors Journal, Vol. 13, No. 5, p. 1972-1978, 2013.
  88. A self-referencing biosensor based upon a dual-mode external cavity laser,” M. Zhang, C. Ge, M. Lu, Z. Zhang, and B.T. Cunningham, Applied Physics Letters, Vol. 201, p. 213701-213703, 2013. (Featured on Cover) PMC3683028
  89. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence (invited review),” V. Chaudhery, S. George, M. Lu, A. Pokhriyal, and B.T. Cunningham, Sensors Journal, Vol. 13, p. 5561-5584, 2013. DOI: 10.3390/s130505561
  90. External Cavity Laser Biosensor,” C. Ge, M. Lu, S. George, C. Wagner, J. Zheng, A. Pokhriyal, C. Siu, J.G. Eden, P.J. Hergenrother and B.T. Cunningham, Lab on a Chip, Vol. 13, No. 7, p. 1247-1256, 2013 (Featured on Front Cover).
  91. Colorimetric plasmon resonance imaging using nano Lycurgus cup arrays“, M.R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B.T. Cunningham, T.C. Bond, and G.L. Liu, Advanced Optical Materials, Vol. 1, No. 1, p. 68-76, 2013. (Featured on Cover)
  92. Coupled External Cavity Photonic Crystal Enhanced Fluorescence,” A. Pokhriyal, M. Lu, C. Ge and B.T. Cunningham, Journal of Biophotonics, Vol. 7, No. 5, p. 332-340, 2012. DOI: 10.1002/jbio.201200173 (Featured on Front Cover)
  93. Bidirectional scatter measurements of a guided mode resonant filter photonic crystal structure,” M.A. Marciniak, S.R. Sellers, R B. Lamott, and B T. Cunningham, Optics Express, Vol. 20, No. 25, pp. 27242–27252, 2012.
  94. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” H.-Y. Wu, C. J. Choi and B.T. Cunningham, Small, Vol. 8, No. 18, p. 2769, 2012 (Featured on Cover).
  95. Tunable ring laser with internal injection seeding and an optically-driven photonic crystal reflector,” J. Zheng, C. Ge, C.J. Wagner, M. Lu, B.T. Cunningham, J.D Hewitt, and J.G. Eden, Optics Express, Vol. 20, No. 13, p. 14292-14301, 2012.
  96. A line-scanning detection instrument for photonics crystal enhanced fluorescence,” V. Chaudhery, M. Lu, C.-S. Huang, J. Polans, R. Tan, R.C. Zangar, and B.T. Cunningham, Optics Letters, Vol. 37, No. 13, p. 2565-256, 2012.
  97. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” B.T. Cunningham and R.C. Zangar, Journal of Biophotonics, Vol. 8-9, p. 617-628, 2012. (Invited Review, Special Issue – Lab-on-a-Chip Diagnostics, featured on cover)
  98. Multiplexed cancer biomarker detection using quartz-based photonic crystal surfaces,” C.-S. Huang, V. Chaudhery, A. Pokhriyal, S. George, J. Polans, M. Lu, R. Tan, R.C. Zangar, B.T. Cunningham, Analytical Chemistry, Vol. 84, No. 2, p. 1126-1133, 2012.
  99. Nanoreplicated positive and inverted submicron polymer pyramids array for surface-enhanced Raman spectroscopy,” Z. Xu, H.-Y. Wu, S.U. Ali, J. Jiang, B.T. Cunningham, and G.L. Liu, Journal of Nanophotonics, Vol. 5, p. 053526, 2011. (doi: 10.1117/1.3663259)
  100. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” J.-N. Liu, M.V. Schulmerich, R. Bhargava, and B.T. Cunningham, Optics Express, Vol. 19, No. 24, pp. 24182-24197, 2011.
  101. Spectral characteristics of single and coupled microresonator lasers comprising a replica-molded Bragg grating and dye-doped polymer,” J. Zheng, M. Lu, C.J. Wagner, B.T. Cunningham, and J.G. Eden, Journal of the Optical Society of America B, Vol. 29, No. 2, p. 209-214, 2012.
  102. Biochemical Sensor Tubing for Point-of-Care Monitoring of Intravenous Drugs and Metabolites,” C.J. Choi, J. Weyhenmayer, H.-Y. Wu, and B.T. Cunningham, Lab on a Chip, Vol. 12, No. 3, p. 574-581, 2012.
  103. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays,” V. Chaudhery, M. Lu, C.-S. Huang, A. Pokhriyal, J. Polans, S.C. Schulz and B.T. Cunningham, Optics Express, Vol. 19, No. 23, p. 23327–23340, 2011.
  104. Angle-scanning photonic crystal enhanced fluorescence microscopy,” V. Chaudhery, M. Lu, A. Pokhriyal, S. Schulz, and B.T. Cunningham, IEEE Sensors Journal, Accepted, September 2011.
  105. Plastic-based distributed feedback laser biosensors in microplate format,” Y. Tan, A. Chou, C. Ge, M. Lu, W. Goldshlag, J. Huang, A. Pokhriyal, S. George, and B.T. Cunningham, IEEE Sensors Journal, Accepted, July 2011.
  106. Label-free imaging of cell attachment with photonic crystal enhanced microscopy,” E.A. Lidstone, V. Chaudhery, A. Kohl, V. Chan, T.W. Jensen, L.B. Schook, R. Bashir, and B.T. Cunningham, Analyst, Vol. 136, No. 18, p. 3608-3615, 2011. DOI: 10.1039/C1AN15171A. (Featured on inside cover)
  107. Quick detection of contaminants leaching from polypropylene centrifuge tube with surface enhanced raman spectroscopy and ultra violet absorption spectroscopy,” Z. Xu, C.J. Choi, B.T. Cunningham, and G.L. Liu, Journal of Raman Spectroscopy, Published Online April 19, 2011, DOI:10.1002/jrs.2950.
  108. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping,” C. Ge, M. Lu, Y. Tan, and B.T. Cunningham, Optics Express, Vol. 19, No. 6, p. 5086-5092, 2011.
  109. Enhanced quantum dot optical downconversion using asymmetric 2D photonic crystals,” F. Yang and B.T. Cunningham, Optics Express, Vol. 19, No. 5, p. 3908-3918, 2011.
  110. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells,” Leo L. Chan, Sherine George, Irfan Ahmad, Saujanya L. Gosangari, Atiya Abbasi, Brian T. Cunningham, and Kenneth L. Watkin, Evidence-Based Complementary and Alternative Medicine, Vol 2011, Article ID 860605.
  111. Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” H.-Y. Wu and B.T. Cunningham, Applied Physics Letters, Vol. 98, Issue 15, p. 153103, 2011 (Featured on Cover).
  112. Application of photonic crystal enhanced fluorescence to cancer biomarker microarrays,” C.-S. Huang, S. George, M. Lu, V. Chaudhery, R. Tan, R.C. Zangar, and B.T. Cunningham, Analytical Chemistry, Vol. 83, No. 4, p. 1425-1430, 2011 (Featured on Cover).
  113. Label-free cell-based assays using photonic crystal optical biosensors,” S.M. Shamah and B.T. Cunningham, The Analyst, Accepted, December 2010. (Invited review) Published online February 3, 2011, DOI: 10.1039/C0AN00899K.
  114. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B.T. Cunningham, Optics Express, Vol. 18, No. 24, p. 24793-24808, 2010.
  115. Photobleaching on photonic crystal enhanced fluorescence surfaces,” V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, Journal of Fluorescence, Published Online November 12, 2010, DOI 10.1007/s10895-010-0760-8.
  116. Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” S. George, I.D. Block, S.I. Jones, P.C. Mathias, V. Chaudhery, H.-Y Wu, P.Vuttipittayamongkol, L. Vodkin, and B.T. Cunningham, Analytical Chemistry, Vol. 82, No. 20, p. 8551-8557, 2010.
  117. Surface-enhanced raman nanodomes,” C.J. Choi, A. Xu, H.-Y. Wu, L. Liu, and B.T. Cunningham, Nanotechnology, Vol 21, p. 415301 (2010) DOI: 10.1088/0957-4484/21/41/415301.
  118. Cytotoxicity screening of bangladeshi medicinal plant extracts on pancreatic cancer cells,” S. George, S.V. Bhalerao, E.A.Lidstone, I.S. Ahmad, A. Abbasi, B.T. Cunningham, K.L. Watkin, BMC Complementary and Alternative Medicine, 10:52, 2010.
  119. Multi-color fluorescence enhancement from a photonic crystal surface,” A. Pokhriyal, M. Lu, C. Huang, S.C. Schulz, and B.T. Cunningham, Submitted to Applied Physics Letters, Vol. 97, No. 12, p. 121108-121110, 2010. PMCID: PMC2955725
  120. Improved detection of differentially expressed genes on a DNA microarray by photonic crystal enhanced fluorescence,” P.C. Mathias, S. I. Jones, H.-Y. Wu, F. Yang, D.O. Gonzalez, L.O. Vodkin, and B.T. Cunningham, Analytical Chemistry, Vol. 82, No. 16, p. 6854-6861, 2010.
  121. Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays,” C.J. Choi, A.R. Belobraydich, L.L. Chan, P.C. Mathias, and B.T. Cunningham, Analytical Biochemistry, Vol. 405, No. 1, p. 1-10, 2010.
  122. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” C. Ge, M. Lu, X. Jian, Y. Tan, and B.T. Cunningham, Optics Express, Vol. 18, No. 12, p. 12980-12991, 2010..
  123. Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” F. Yang, G. Yen, and B.T. Cunningham, Optics Express, Vol. 18, No. 11, p. 11846-11858, 2010.
  124. Sensing micrometer-scale deformations vias stretching of a photonic crystal,” N.L. Privorotskaya, C.J. Choi, B.T. Cunningham, and W.P. King, Sensors and Actuators A, Vol. 161, p. 66-71, 2010..
  125. Narrowband mid-infrared reflectance filters using guided mode resonance,” A.K. Kodali, M. Schulmerich, J. Ip, G. Yen, B.T. Cunningham, and R. Bhargava, Analytical Chemistry ,Vol. 82, p. 5697-5706, 2010.
  126. Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” C. Ge, M. Lu, W. Zhang, and B.T. Cunningham, Applied Physics Letters,Vol. 96, p. 163702-163704, 2010 (DOI: 10.1063/1.3394259).
  127. Deposited nanorod films for biosensor applications,” W. Zhang, S.-M. Kim, N. Ganesh, I.D. Block, P.C. Mathias, and B.T. Cunningham, Journal of Vacuum Science and Technology A, Vol. 28, No. 4, p. 996-1001, 2010.
  128. Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” S.-m. Kim, W. Zhang, and B.T. Cunningham, Optics Express, Vol. 18, No. 5, p. 4300-4309, 2010.
  129. Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface,” H.-Y. Wu, W. Zhang, P.C. Mathias, and B.T. Cunningham, Nanotechnology, Vol. 21, p. 125203-125210, 2010.
  130. Detection of growth factor binding to gelatin and heparin using a photonic crystal biosensor,” L.L. Chan, A. Morgan, A. Sendemir-Urkmez, R. Jamison, and B.T. Cunningham, Materials Science and Engineering C, Vol. 30, p. 686-690, 2010.
  131. Identifying modulators of protein-protein interactions using photonic crystal biosensors,” J.T. Heeres, S.-H. Kim, B.J. Leslie, E.A. Lidstone, B.T. Cunningham, and P.J. Hergenrother, Journal of the American Chemical Society, Vol. 131, No. 51, p. 18202-18203, 2009.
  132. “Label-free detection of soybean rust spores using photonic crystal biosensor,” R. Vittal, W. Zhang, L.L. Chan, B.T. Cunningham, and G. Hartman, Phytopathology Vol. 99, No. 6, S136, 2009.
  133. Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays,” Brian T. Cunningham, Journal of the Association for Laboratory Automation, Volume 15, Issue 2, p. 120-135 (April 2010).
  134. Optimizing the spatial resolution of photonic crystal label-free imaging,” Ian D. Block, Patrick C. Mathias, Sarah I. Jones, Lila O. Vodkin, and Brian T. Cunningham, Applied Optics, Vol. 48, Issue 34, p. 6567-6574 (2009).
  135. Vapor phase deposition of monofunctional alkoxysilanes for sub-nanometer level biointerfacing on oxide surfaces,” B. Dorvel, R. Reddy, Jr., I.D. Block, P.C. Mathias, S.E. Clare, D.E. Bergstrom, B.T. Cunningham, and R. Bashir, Advanced Materials, Vol. 20, p. 87-95, 2010, (DOI: 10.1002/adfm.200901688).
  136. Photonic crystal integrated microfluidic chip for determination of kinetic reaction rate constants,” C. J. Choi, I.D. Block, B. Bole, D. Dralle, B.T. Cunningham, IEEE Sensors Journal, Vol. 9, No. 12, p. 1697-1704, 2009.
  137. A detection instrument for enhanced fluorescence and label-free imaging on photonic crystal surfaces,” I.D. Block, P.C. Mathias, N. Ganesh, I.D. Jones, B.R. Dorvel, V. Chaudhery, L. Vodkin, R. Bashir, and B.T. Cunningham, Optics Express, Vol. 17 Issue 15, pp.13222-13235, 2009.
  138. A method for identifying small molecule aggregators using photonic crystal biosensor microplates,” L.L. Chan, E.A. Lidstone, K.E. Finch, J.T. Heeres, P.J. Hergenrother, and B.T. Cunningham, Journal of the Association for Laboratory Automation (JALA), Vol. 14, No. 6, p. 348-359, 2009.
  139. Employing two distinct guided-mode resonances to improve fluorescence enhancement from photonic crystals,” P.C. Mathias, H.-Y. Wu, and B.T. Cunningham, Applied Physics Letters, Vol. 95, p. 021111-021113, 2009.
  140. Cartilage tissue engineering on fibrous chitosan scaffolds produced by a replica molding technique,” G. Ragetly, G. Slavik, B.T. Cunningham, D.J. Schaeffer, and D. Griffon, Journal of Biomedical Material Research Part A, Vol. 93, p. 46-55, 2010.
  141. Microfluidic chip for combinatorial mixing and screening of assays,” B.R. Schudel, C.J. Choi, B.T. Cunningham, and P.J.A. Kenis, Lab on a Chip, Vol. 12, p. 1676-1680, 2009.
  142. Leaky-mode assisted fluorescence extraction: Application to fluorescence enhancement biosensors,” N. Ganesh, I.D. Block, P.C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B.T. Cunningham, Optics Express, Vol. 16, No. 26, p. 21626-21640, 2008.
  143. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay,” P.C. Mathias, N. Ganesh, and B.T. Cunningham, Analytical Chemistry, Vol. 80, No. 23, p. 9013-9020, 2008.
  144. Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” S.-M. Kim, W. Zhang, and B.T. Cunningham, Applied Physics Letters, Vol. 93, p. 143112, DOI: 10.1063/1.2998695, Published Online October 9, 2008.
  145. Rapid label-free selective detection of porcine rotavirus using photonic crystal biosensors,” M.F. Pineda, L.L. Chan, T. Kuhlenschmidt, M. Kuhlenschmidt, and B.T. Cunningham, IEEE Sensors Journal, Vol. 9, No. 4, p. 470-477, 2009.
  146. Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” W. Zhang and B.T. Cunningham, Applied Physics Letters, Vol. 93, p. 133115, DOI: 10.1063/1.2994696, published online October 2, 2008.
  147. Plastic distributed feedback laser biosensor,” M. Lu, S. S. Choi, U. Irfan, and B.T. Cunningham, Applied Physics Letters, Vol. 93, No. 11, p. 111113 (DOI 10.1063/1.2987484), Published Online September 18, 2008.
  148. Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” W. Zhang, N. Ganesh, P.C. Mathias, and B.T. Cunningham, Small, Vol. 4, No. 12, p. 2199-2203, 2008.
  149. General method for discovering inhibitors of protein-DNA interactions using photonic crystal biosensors,” L.L. Chan, M.F. Pineda, J. Heeres, P. Hergenrother, and B T. Cunningham, ACS Chemical Biology, Vol. 3, No. 7, p. 437-448, 2008.
  150. VCSEL optoelectronic biosensor for detection of infectious diseases,” M.C.Y. Huang, C.F.R. Mateus, J.E. Foley, R. Beatty, B.T. Cunningham, and C.J. Chang-Hasnain, IEEE Photonics Technology Letters, Vol. 20, No. 6, p. 443-445, 2008.
  151. Advantages and application of label-free detection assays in drug screening,” B.T. Cunningham and L.G. Laing, Expert Opinions in Drug Discovery, Vol. 3, No. 8, p. 891-901, 2008.
  152. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser,” M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, Applied Physics Letters, Vol. 92, 261502, 2008.
  153. Honey I shrunk the world: research and development in nanotechnology at the university of illinois,” I.S. Ahmad and B.T. Cunningham, IEEE Nanotechnology Magazine, December, p. 5-10, 2008.
  154. Low temperature plasma channels generated in microcavity trenches with widths 20-150 um and aspect rations as large as 10000:1“, M. Lu, S.-J. Park, B.T. Cunningham, and J.G. Eden, Applied Physics Letters, Vol. 92, p. 101928, 2008.
  155. Distance dependence of fluorescence enhancement from photonic crystal surfaces,” N. Ganesh, P.C. Mathias, W. Zhang, and B.T. Cunningham, Journal of Applied Physics, Vol. 103, p. 083104, 2008.
  156. High sensitivity plastic-substrate photonic crystal biosensor,” I.D. Block, M.F. Pineda, C.J. Choi, and B.T. Cunningham, IEEE Sensors Journal, Vol. 8, No. 9, p. 1546-1547, 2008.
  157. Optically tuned resonant optical reflectance filter,” F. Yang, G. Yen, G. Rasigade, J. Soares, and B.T. Cunningham, Applied Physics Letters, Vol. 92, No. 9, p. 091115, DOI: 10.1063/1.289071, 2008.
  158. Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence,” P.C. Mathias, N.Ganesh, W.Zhang, and B.T. Cunningham, Journal of Applied Physics, Vol. 103, p. 094320, 2008.
  159. Vertically emitting, dye-doped polymer laser in the green (lambda ~ 536 nm) with a second order distributed feedback grating fabricated by replica molding,” M. Lu, J.G. Eden, and B.T. Cunningham, Optics Communications, Vol. 281, p. 3159-3162, 2008.
  160. High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” W. Zhang, N. Ganesh, I.D. Block and B.T. Cunningham, Sensors and Actuators B, Vol. 131, p. 279-284, 2008.
  161. A sensitivity model for predicting photonic crystal biosensor performance,” I.D. Block, N. Ganesh, M. Lu, and B.T. Cunningham, IEEE Sensors, Vol. 8, No. 3, p. 274-280, 2008.
  162. Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” L.L. Chan, S. Gosangari, K.L. Watkin, and B.T. Cunningham, Sensors and Actuators B, Vol. 132, p. 418-425, 2008.
  163. A replica molding technique for producing fibrous chitosan scaffolds for cartilage engineering,” G.J. Slavik, G. Ragetly, N. Ganesh,a D.J. Griffon, and B.T. Cunningham, Journal of Materials Chemistry, Vol. 17, p. 4095 – 4101, 2007.
  164. A voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” F. Yang, G. Yen, and B.T. Cunningham, Applied Physics Letters, Vol. 90, p. 261109-261111, 2007.
  165. Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” N. Ganesh, W. Zhang, P.C. Mathias and B.T. Cunningham, Nature Nanotechnology, v 2, no 8, p. 515-520, 2007 .
  166. A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis,” C. J. . Choi and B.T. Cunningham, Lab On A Chip, Vol. 7, p. 550-556, 2007.
  167. Compact wavelength detection system incorporating a guided-mode resonance filter,” N.Ganesh, A. Xiang, N.B. Beltran, D.W. Dobbs, and B.T. Cunningham, Applied Physics Letters, v. 90, p. 081103-081106, 2007.
  168. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” P.C. Mathias, N. Ganesh, L.L. Chan, and B.T. Cunningham, Applied Optics, Vol. 46, No. 12, p. 2351-2360, 2007.
  169. A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” L. Chan, S. Gosangari, K. Watkin, and B.T. Cunningham, Apoptosis, Vol. 12, No, 6, p. 1061-1068, 2007.
  170. Microplasma devices and arrays fabricated by plastic-based replica molding,” M. Lu, S.-J. Park, J.G. Eden, and B.T. Cunningham, JMEMS, Vol. 16, No. 6, p. 1397-1402, 2007.
  171. Fabrication of a graded wavelength guided mode resonant filter photonic crystal,” D. Dobbs, I. Gershkovich, and B.T. Cunningham, Applied Physics Letters, v 89, n 12, 2006, p 123113-123116.
  172. Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” I.D. Block, L.L. Chan, and B.T. Cunningham, Microelectronic Engineering, Vol. 84, No. 4, p.603-608, 2007.
  173. Single-step fabrication of photonic crystal biosensors with polymer microfluidic channels by a replica molding process,” C.J. Choi and B.T. Cunningham, Lab-On-A-Chip, Vol. 6, p. 1373-1380, 2006.
  174. Optically tunable photonic crystal reflectance filter,” D. Dobbs and B.T. Cunningham, Applied Optics, Vol. 45, Issue 28, pp. 7286-7293, 2006.
  175. Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” N. Ganesh, I.D. Block, and B.T. Cunningham, Applied Physics Letters, v 89, n 2, 2006, p 023901-023904.
  176. Self-referenced assay method for photonic crystal biosensors: application to small molecule analytes,” L.L. Chan, P.Y. Li, D. Puff, and B.T. Cunningham, Sensors and Actuators B, Vol. 120, No. 2, p.392-398, 2007.
  177. A self- referencing method for microplate label-free photonic crystal biosensors,” L.L. Chan, P.Y. Li, D. Puff, and B.T. Cunningham, IEEE Sensors Journal, Vol. 6, No. 6, p. 1551-1556, 2006.
  178. Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” I.D. Block, L.L. Chan, and B.T. Cunningham, Sensors and Actuators, B: Chemical, v 120, n 1, Dec 14, 2006, p 187-193.
  179. Photonic crystal near UV reflectance filters fabricated by nano replica molding,” N. Ganesh and B.T. Cunningham, Applied Physics Letters, v 88, n 7, 2006, p 071110-071113
  180. Label-free detection of biomolecular interactions: applications in proteomics and drug discovery,” B.T. Cunningham and L.L. Laing, Expert Reviews in Proteomics, Vol 3, No. 3, p. 271-281, (2006).
  181. A label-free biosensor-based cell attachment assay for characterization of cell surface molecules,” B. Lin, P. Li, and B.T. Cunningham, Sensors and Actuators B, Vol 114, No. 2, p. 559-564, (2006).
  182. Label-free assays on the BIND system,” B.T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, Journal of Biomolecular Screening, Vol 9, p. 481-490, (2004).
  183. Ultra sensitive immunoassay using VCSEL detection system,” C.F.R. Mateus, M.C.Y. Huang, J.E. Foley, P.R. Beatty, P. Li, B.T. Cunningham, and C.J. Chang-Hasnain, Electronic Letters, Vol. 40, No. 11, May 2004.
  184. A new method for label-free imaging of biomolecular interactions,” P. Li, B. Lin, J. Gerstenmaier, and B.T. Cunningham, Sensors and Actuators B, Vol. 99, p. 6-13, (2004).
  185. Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” B.T. Cunningham, J. Qiu, P. Li, and C. Baird, Sensors and Actuators B, Volume 87, Issue 2, Pages 365-370, December 2002.
  186. Compact label-free biosensor using VCSEL-based measurement system,” C.F.R. Mateus, M.C.Y. Huang, J.E. Foley, P.R. Beatty, P. Li, B.T. Cunningham, and C.J. Chang-Hasnain, IEEE Photonics Technology Letters, Vol 16, No 7, 1712-1714, 2004.
  187. Detection of proteins and intact microorganisms using microfabricated flexural plate wave resonator arrays,” J. Pepper, R. Noring, M. Klempner, B.T. Cunningham, A. Petrovich, R. Bousquet, C. Clapp, J. Brady, and B. Hugh, Sensors and Actuators B, Vol 96, No. 3, p. 565-575, 2003.
  188. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” B.T. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, Sensors and Actuators B, Vol. 85, number 3, pp219-226, November 2002.
  189. A label-free high throughput optical technique for detecting small molecule interactions,” B. Lin, J. Pepper, P. Li, H. Pien, and B.T. Cunningham, Biosensors and Bioelectronics, Vol. 17, No. 9, p. 827-834, September 2002.
  190. Colorimetric resonant reflection as a direct biochemical assay technique,” B.T. Cunnigham, P. Li, B. Lin, and J. Pepper, Sensors and Actuators B, Volume 81, p. 316-328, January 2002.
  191. Design, fabrication and vapor characterization of a microfabricated flexural plate resonance sensor and application to integrated sensor arrays,” B.T. Cunningham, M. Weinberg, J. Pepper, C. Clapp, R. Bousquet, B. Hugh, R. Kant, C. Daly, E. Hauser, Sensors and Actuators B, 73, p. 112-123, (2001).
  192. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication,” S. Kaihara, J. Borenstein, R. Koka, S. Lalan, M. Ravens, H. Pien, B.T. Cunningham, and J. Vacanti, Tissue Engineering, 6(2):105-117, 2000.
  193. Bake stability of lang-wavelength infrared HgCdTe photodiodes,” A. Mestechkin, D.L. Lee, B.T. Cunningham, and B.D. MacLeod, Journal of Electronic Materials, vol. 24, n. 9, p. 1183-1187, 1995.
  194. Al-Ga interdiffusion in heavily carbon-doped AlGaAs quantum well heterostructures,” L.J. Guido, B.T. Cunningham, D.W. Nam, K.C. Hsieh, W.E. Plano, J.S. Major, Jr., E.J. Vesely, A.R. Sugg, N. Holonyak, Jr., and G.E. Stillman, J. Appl. Phys. 67, 2179-2182 (1990).
  195. Modeling of flexural plate wave devices,” M.W. Weinberg, B.T. Cunningham, and C. Clapp, JMEMS, Vol. 9, No. 3, p. 370-379, (2000).
  196. Effect of reduced temperature on the ft of AlGaAs/GaAs heterojunction bipolar transistors,” J. Laskar, A.W. Hanson, B.T. Cunningham, J. Kolodzey, G.E. Stillman, and S.J. Prasas, IEEE Electron Device Letters, vol 12, n. 6, p. 329-331, (1991).
  197. Absence of 13C incorporation in 13CCl4 doped InP grown by MOCVD,” B.T. Cunningham, J.E. Baker, S.A. Stockman, and G.E. Stillman, Appl. Phys. Lett. 56, 1760-1762 (1990).
  198. Carbon doped base GaAs/AlGaAs heterojunction bipolar transistor grown by MOCVD using Carbon Tetrachloride as the Dopant Source,” B.T. Cunningham, G.S. Jackson, and G.E. Stillman, Appl. Phys. Lett. 56, 361-363 (1990).
  199. CCl4 doped AlxGa1-xAs grown by MOCVD,” B.T. Cunningham, J.E. Baker, and G.E. Stillman, J. Electron. Mater. 19, 331-335 (1990).
  200. CCl4 doped AlGaAs grown by MOCVD,” B.T. Cunningham, J.E. Baker, and G.E. Stillman, Appl. Phys. Lett. 56, 836-838 (1990).
  201. Column III-column V sublattice interaction via Zn- and Si- impurity-induced layer-disordering of 13C in modulation doped AlxGa1-xAs quantum well heterostructures,” L.J. Guido, J.S. Major, Jr., J.E. Baker, N. Holonyak, Jr., B.T. Cunningham, and G.E. Stillman, Appl. Phys. Lett. 56, 572-574 (1990.)
  202. High precision temperature and energy dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” S.R. Kisting, P.W. Bohn, E. Andideh, I. Adesida, B.T. Cunningham, and G.E. Stillman, Appl. Phys. Lett. 57, 1328-1330 (1990).
  203. Layer intermixing in heavily carbon-doped AlGaAs/GaAs superlattices,” I. Szafranek, M. Szafranek, B.T. Cunningham, L.J. Guido, N. Holonyak, Jr., and G.E. Stillman, J. Appl. Physics, 68, 5615-5620 (1990).
  204. Instability of partially disordered carbon-doped AlGaAs/GaAs superlattices,” I. Szafranek, J.S. Major, Jr., B.T. Cunningham, L.J. Guido, N. Holonyak, Jr., and G.E. Stillman, Appl. Phys. Lett. 27, 2910-2912 (1990).
  205. Layer intermixing and related long-term instability in heavily carbon-doped AlGaAs/GaAs superlattices,” I. Szafranek, M. Szafranek, J.S. Major, Jr., B.T. Cunningham, L.J. Guido, N. Holonyak, Jr., and G.E. Stillman, J. Electron Mater. 20, 409-418 (1990).
  206. Heavy carbon doping of MOCVD-grown GaAs using carbon tetrachloride,” B.T. Cunningham, M.A. Haase, M.J. McCollum and G.E. Stillman, Appl. Phys. Lett. 54, 1905-1907 (1989).
  207. Carbon diffusion in undoped, n-type, and p-type GaAs,” B.T. Cunningham, L.J. Guido, J.E. Baker, J.S. Major, Jr., N. Holonyak, Jr., and G.E. Stillman, Appl. Phys. Lett. 55, 687-689 (1989).
  208. “Fault characterization and delay fault testing of GaAs logic circuits,” B.T. Cunningham, P. Bannerjee, and W.K. Fuchs, Proceedings of the 1987 International Conference on Fault Tolerant Computing.